
TURNING MOODLE WEB INTO A
PROGRESSIVE WEB APP (PWA)

June	2018

Mitxel	Moriana
Developer	@	3iPunt	Moodle	Partner



WHAT IS A PWA ?

Web	App	stands	for	any	web	app,	like	Moodle!

P stands	for	progressive	or	“optionally	enhanced”:

if browser supports this cool feature {
use it

} else {
// no problem! Do nothing

}



TYPICAL EXAMPLES OF “PROGRESSIVENESS”

if	('serviceWorker'	in	navigator)	{
register our Service Worker

}

if	('serviceWorker'	in	navigator		&&	'PushManager'	in	window)	{
we	can	use	the Push API	in	our Service Worker

}

if	('caches'	in	window)	{
we can	use	the CacheStorage API	to	access storages/caches	(i.e.:	key-value pairs,	request-
responses	pairs)	shared by the window and	the Service Worker

}



THE SERVICE WORKER (I)

Not	be	confused	with	a	shared	worker

Event-driven	script (written	in	JS)	run	(when	needed)	by	the	browser	in	
the	background (i.e.:	in	its	own	context/thread,	not	tied	to	a	page,	no	direct	DOM	access).

Allows	for	the	interception	(on	fetch	event)	of	navigation/requests	
within	its	“scope”	(usually,	but	not	necessarily,	the	wwwroot of	our	site).



THE SERVICE WORKER (II)

Allows	for:
• Caching	responses	(and	serving	them)	at	client	level
• Serving	fallback	responses	to	errors	(or	any	custom	condition)

• Pre-caching of	responses/resources
• Background	data	synchronization	(periodic data	sync	is	“experimental)

• Push	notifications

Ideally	==	when	possible	==	if	we	do	it	right;
• Faster	navigation
• Offline	navigation
• Happier	users	(also,	happier	developers)



TURNING MOODLE INTO A PWA
CAUSE STUDY OF ELE.ME	(MPA)

Skeleton	screen	+	PRPL	pattern	
(Preload critical	resources, Render initial	route, Pre-cache remaining	routes, Lazy-load remaining	routes).

Results:
• Loading	time	decreased	by	11.6%	across	all	pre-cached	pages
• Loading	time	decreased	on	average	by	6.35%	across	all	pages.
• Time-to-consistently-interactive	dropped	to	4.93	seconds	on	a	3G	network	on	first	load

More	info:
https://h5.ele.me/
https://medium.com/elemefe/upgrading-ele-me-to-progressive-web-app-2a446832e509



TURNING MOODLE INTO A PWA
THE OFFLINE FALLBACK VIEW

Pre-cache	an	offline	view	and	use	it	as	an	offline	response	fallback	(for	non-
cached	view	request/responses).



TURNING MOODLE INTO A PWA
CACHING STATIC CONTENT (I)
Caching	JS,	CSS,	images,	fonts…	when	requested	at	least	once.

Moodle	serves	optimized	static	content	using	specific	scripts:
theme/styles.php – serves	“the	one	huge	CSS	of	each	theme”
theme/font.php – serves	“the	fonts	used	in	CSS”
theme/yui_combo.php – serves	“yui Javascript and	CSS”
theme/image.php – serves	“the	one	theme	and	plugin	images”
lib/javascript.php – serves	“optimised JS”
lib/requirejs.php – serves	“optimised JS	for	RequireJS”

The	URLs	to	these	scripts	contain	theme/script	“versioning”	parameters:
New	versions	=>	different	request	URL	=>	no	conflict updated	vs	cached



TURNING MOODLE INTO A PWA
CACHING STATIC CONTENT (II)
Choosing	the	“right”	serving	and	caching	strategy/recipe:

Does	the	URL	(including	parameters)	always	returns	the	same	content?

if	yes {
Use	“cache	only”	(if	pre-cached!)	or	“cache	first”	serving	strategies	(and	dynamically	cache	them)

}	else	if	not	always,	but	to	load	the	most	recent	version	IS	NOT	essential	{
Use	“stale	while	revalidate”	serving/caching	strategy	(serve	cached	if	exists	but	check	in	background	for	
an	update	and	cache	updated	resource	when	needed)

}	else	if	not	always,	but	to	load	the	most	recent	version	IS	essential	{
Use	“network	first”	serving	strategy	(and	dynamically	cache	newest	version,	but	use	them	only	as	a	
fallback)

} else	if	no	and	never	{
Are	you	sure	it	is	static content?	Why	do	we	need	to	cache	it?

}



TURNING MOODLE INTO A PWA
CACHING STATIC CONTENT (III)

Lighthouse	audit
Mobile	emulated,	3G	throttled	“second	visit”,	i.e.	with	browser	cache	preserved.	

With Service	Worker	serving	cached	static	content:
1260	ms (first	meaningful	paint)
Without Service	Worker:	
1430	ms (first	meaningful	paint)

“First	meaningful	paint”	was	170	ms faster =	improvement of	~10%	in	the	“user-
perceived	loading	experience”



TURNING MOODLE INTO A PWA
CACHING STATIC CONTENT (IV)

WITH	SW WITHOUT	SW



TURNING MOODLE INTO A PWA
HOME SCREEN &	MANIFEST.JSON (I)	
manifest.json
{

app	name and	short_name,
icons (icons and	splash	screens),
related_applications (web,	play	store…),
start_url (starting	url,	it	could	be	the	root	/	),
display	(standalone	=	“appish”,	browser…),
scope	(scope	url,	like	for	example	the	root	/	)
background	and	theme	_color	(#f98012),
...

}
+	<link	rel="manifest"	href="/manifest.json">
+	convenient	meta	tags…
+	https	
+	¿use	conditions?
=
Browser	prompts	the	user	to	install	the	home	screen	
/	Add	to	home	screen	menu	option	appears

MOBILE



TURNING MOODLE INTO A PWA
HOME SCREEN &	MANIFEST.JSON (II)	

You	can	set	the	manifest.json in	a	way	that		the	user	can	be	prompted	to	install	
the	mobile	app	from	the	stores (instead	of	as	a	“link”	to	the	PWA)

¿More	convenient	for	customers	that	have	their	own	Moodle	Mobile	app?

{
…
related_applications:	[{ platform:	web	},	{	platform:	play,	id:	com… }]
prefer_related_applications:	true

}

MOBILE



TURNING MOODLE INTO A PWA
HOME SCREEN &	MANIFEST.JSON (III)	

DESKTOP (CHROME	APPS)MOBILE	
HOME	
SCREEN

MOBILE	
SPLASH	
SCREEN	
EXAMPLE



TURNING MOODLE INTO A PWA
CACHING PAGE VIEWS (I)

One	idea…
Caching	the	most	used	views	in	a	
given	Moodle	instance…

Which	views	are	the	most	“used”
in	a	given	Moodle	instance?

ANALYTICS	can	tell	us	à



TURNING MOODLE INTO A PWA
CACHING PAGE VIEWS (II)

PROBLEM!
Many	routes	serve	different	content	when	authenticated	/	not-authenticated.	
Eg:
• While	not	authenticated	all	routes	“serves”	(redirect	to)	the	login	page.
• User-specific	content	(e.g.:	same	course	route,	different	user/user	role).

We	could	evaluate	the	session	cookie	credentials	in	our	serving	strategies…
But	do	we	really	want	to	cache	the	response	(from	an	“authenticated”	context)	and	
make	it	publicly	available	to	anyone	with	access	to	the	browser?

¿App	shell	to	the	rescue?



TURNING MOODLE INTO A PWA
CACHING PAGE VIEWS (III)

The	App	Shell	approach	(as	I	understand	it)	->	Refactor	party!

• Remove	all	user-specific	/	authentication-needed	data	from	ALL	THE	VIEWS	AND	
LAYOUTS

• Render	the	view	specific	information	using	asynchronously	called	web	services	
(with	the	proper	login	and	capabilities	checks)

• Render	the	layout	“user-related”	elements	and	information	the	same	way	(e.g.:	
the	user	menu,	the	course	navigation	panel…)



TURNING MOODLE INTO A PWA
CACHING PAGE VIEWS (IV)

Refactoring	party with	the	mod_url view.php ->	/mod/url/view.php



TURNING MOODLE INTO A PWA
CACHING PAGE VIEWS (V)

+	web	service	to	serve	the	
mod_url view.php content	(all	
“view”	cases)

mod/url/classes/external.php
load_view



TURNING MOODLE INTO A PWA
CACHING PAGE VIEWS (VI)
App-shelled mod_url view >>>

User,	session… related
information removed	from the
views
No	user menu,	no	navigation
menu,	no	footer user-related
links,	no	mod_url view-specific
data…

This is our “app	shell”,	let’s
cache	this!	(stalewhilereval?	
cache	first?)



TURNING MOODLE INTO A PWA
CACHING PAGE VIEWS (VII)
Then we load	asynchronously
the actual	content behind auth
and	capabilities checks

This is the mod_url view
content loaded from a	web	
service.

Do	the same with the
information removed	from the
layout!	->	web	service +	async
loading



TURNING MOODLE INTO A PWA
CACHING PAGE VIEWS (VIII)

Lighthouse audit (without refactoring the layout,	just the mod_url view)

App	shell	approach:
“First	meaningul paint”
~600	ms (half	the	time)

Caveats:
The	actual	content
”appears”	much	later
(+	1	sec	at	least)	(on	load)



TURNING MOODLE INTO A PWA
ADDING THE SERVICE WORKER TO THE MOODLE CORE?

• Allow	for	plugins	to	define	their	scope	and	tie	plugin	routes	to	different	caching	
strategies	/	precaching (ServiceWorker API	?).	

• Create	a	php script	that	builds	and	serves	a	“revisioned”	sw.js collecting	and	
including	all	those	plugin	definitions	across	all	the	Moodle	instance	plugins.

• Add	admin	settings	to	easily	enable/disable	the	inclusion	of	the	service	worker.

• Add	admin	settings	to	easily	include	JS	code	that	unregisters	previously	added	

service	workers	and/or	force	clients	to	clear	their	storages	and	caches	(in	case	

something	went	wrong…).



THANKS TO (POWERED BY)…

• 3iPunt: Pau	Plana,	Ebrahim Mesleh &	Antoni	Bertran

• 3iPunt	“Moodle	Team”:	

Eva	Pereira, Raúl	Martínez	&	Roser	Pruaño

• All developers that have been documenting their

experiences with Service Workers since 2015.


